
QF-PCR in 
pregnancy loss 
analysis

Expert Review 04

Authored by Dr. Helen White, 
National Genetics Reference 
Laboratory (Wessex), Salisbury, UK



Expert review 04  QF-PCR in pregnancy loss samples Expert review 04  QF-PCR in pregnancy loss samples
32

About the author 

Helen White, PhD is a HEFCE-NIHR/CNO Senior 
Clinical Lecturer at the National Genetics Reference 
Laboratory (Wessex), Salisbury NHS Foundation 
Trust and the Faculty of Medicine, University of 
Southampton, UK. After attaining a BSc in Biology, she 
trained as a cytogeneticist and completed a PhD at 
the University of Southampton. In 1997 she moved to 
the Royal Children’s Hospital (Brisbane) to investigate 
the molecular pathogenesis of dengue fever. In 2000 
she joined a European BIOMED concerted action 
programme network that designed and standardised 
molecular genetic diagnostic protocols for the 
detection of T cell receptor and immunoglobulin 
receptor gene recombinations in lymphoproliferations. 
Since 2002, her work at NGRL (Wessex) has focused 
on the development, validation and quality assurance 
of cytogenetic, molecular cytogenetic and molecular 
genetic testing for the diagnosis of constitutional 
and acquired abnormalities. Helen has a strong 
research interest in non-invasive prenatal testing and 
is a member of the UK NEQAS/ EMQN Non Invasive 
Prenatal Diagnosis Specialist Advisory Group and is 
a co-applicant on the NIHR Programme for Applied 
Research Grant “Reliable Accurate Prenatal non-
Invasive Diagnosis (RAPID) - an integrated project to 
refine and implement safer antenatal testing”.

Introduction 

Approximately 10-15% of all clinically recognised 
pregnancies end in spontaneous miscarriage [1,2]. 
Chromosome abnormalities are recognised as 
being a major factor contributing to pregnancy 
loss and account for about 50% of all spontaneous 
miscarriages. In those first trimester miscarriages 
that have a genetic abnormality, 86% have numerical 
chromosome abnormalities (i.e. trisomies, monosomies 
and polyploidy), structural abnormalities account for 
6% and the remainder (8%) can be attributed to single 
gene mutations and mosaicism [3]. Identification of 
these abnormalities can be useful to provide patients 
with estimated recurrence risks for future pregnancies. 
The main utility of chromosomal analysis for pregnancy 
loss samples is to differentiate the less common 
structural rearrangements where the recurrence risk 
may be substantial (e.g. one parent is the carrier of 
a balanced reciprocal or Robertsonian translocation) 
from the more frequent whole chromosome aneuploidy 
or polyploidy where the recurrence risks are lower. 
Non-genetic factors contributing to pregnancy loss 
include infection, immunological disorders, maternal 
endocrine imbalances, abnormal uterine anatomy and 
thrombophilic disorders [4,5].

The referral reasons for pregnancy loss samples 
will vary in different laboratories but may include; 
spontaneous loss at any gestational age (with or 
without congenital abnormalities), termination of 
pregnancy after an abnormal ultrasound scan or 
prenatal diagnosis, intrauterine death or stillbirth and 
neonatal death and possibly samples from recurrent 
pregnancy loss. Laboratories should have guidelines 
stating which categories of referral are accepted and 
the preferred tissues for analysis [6].

Traditionally, karyotype analysis of pregnancy loss 
samples has been the gold standard method for 
evaluating the genetic cause of pregnancy loss. Routine 
cytogenetic analysis requires the successful culture of 
fetal tissue or chorionic villi and analysis of G-banded 
chromosome preparations from metaphase cells with a 
resolution of approximately 5Mb. However, this 

representative amount of each allele is quantified by cal-
culating the ratio of the peak height or area using appro-
priate software. The number of peaks (alleles) detected 
and allele ratio determine whether a sample is disomic (2 
chromosomes present), indicated by the presence of two 
alleles with a peak height or area ratio of 1:1 or trisomic (3 
chromosomes present), indicated by either the presence 
of three alleles with a 1:1:1 ratio or 2 alleles with a 2:1 or 
1:2 ratio. If only one peak is observed the sample is unin-
formative at that locus and no quantitative information can 
be obtained (see Figure 1). The assays are robust and tol-
erant to input of low quantities (1-3ng) of relatively low 
quality DNA. The test has a rapid turn around time (24 – 48 
hours) and is highly automatable. 

 

approach is labour intensive, expensive, requires highly 
trained technical staff and is often unsuccessful due 
to the high tissue culture failure rate (10-40%) due to 
reduced viability in cell culture of poor quality fetal 
tissue [7]. Tissue cultures from these tissues can also be 
subject to maternal cell overgrowth and microbial  
contamination [8].

”Although karyotyping of miscarriage 
samples is the gold standard it is often 
unsuccessful due to the high tissue culture 
failure rate.” 
 
Current alternative technologies used 
 
Several alternative methodologies to karyotype analysis 
have been used to investigate genetic abnormalities  
in pregnancy loss. These include quantitative fluorescent 
PCR (QF-PCR), array comparative genomic hybridisation 
(aCGH) [9-14], interphase fluorescent in situ hybridisation 
(FISH) [8,15], BACs-on-Beads™ (BoBs) [16-19] and 
multiplex ligation-dependent probe amplification (MLPA) 
[20-25] . These techniques do not require the analysis 
of dividing cells but are instead performed on genomic 
DNA (excluding FISH) and can be easily implemented in 
a diagnostic laboratory setting.  
 
Quantitative fluorescent PCR (QF-PCR) 
 
Over the last fifteen years QF-PCR analysis of short 
tandem repeats (STR) has been used successfully in 
many laboratories for the rapid diagnosis of prenatal 
aneuploidy [26-32] and is now being used more widely 
for the analysis of pregnancy loss samples [10, 20, 33, 
34]. See Expert Review 01: An introduction to QF-PCR 
for more details. For prenatal analysis of the most 
common viable aneuploidies, multiple chromosome 
specific polymorphic repeat sequences (short tandem 
repeats; STRs) located on chromosomes 13, 18, 21, X 
and Y, which vary in length between individuals, are 
amplified using fluorescently labelled primers. The PCR 
amplicons are analysed using an automated genetic 
analyser capable of 2bp resolution and the

Fig. 1 Interpretation of QF-PCR data. Allele ratios can be disomic 
(2 alleles with a 1:1 ratio), trisomic (3 alleles with a 2:1/1:2 or 1:1:1 
ratio) and uninformative.
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The major advantages of the technique are that it is 
capable of detecting aneuploidies (Figure 2 and Expert 
Review 01: An introduction to QF-PCR), mosaicism 
(Figure 3 and Expert Review 02: Detecting mosaicism 
with QF-PCR) and maternal cell contamination (Figure 
4 and Expert Review 03: QF-PCR and maternal cell 
contamination). However numerical abnormalities on 
chromosomes that are not targeted by the specific STR 
primers will not be detected. 
 
QF-PCR analysis in routine practice 
 
QF-PCR is being used increasingly for the analysis of 
pregnancy loss samples [10, 20, 33, 34] often in  
conjunction with other techniques e.g. MLPA [20, 
35] and aCGH [10, 36]. Several published studies 
demonstrate the use of different QF-PCR approaches 
with most studies using QF-PCR as a first line test 
to identify the common aneuploidies (13, 18, 21, X 
and Y) and triploidy associated with first and second 
trimester loss. Samples without an abnormality are 
then tested using MLPA or aCGH to detect unbalanced 
rearrangements, 

aneuploidy of chromosomes not included in the QF-
PCR test and other structural rearrangements. As 
aneuploidy/polyploidy is a less common cause of third 
trimester pregnancy loss it has been suggested that in 
these cases aCGH could be used as a first line test for 
these referrals [10]. 
 
”use of an expanded panel that includes 
STR-markers on chromosomes 15, 16 
and 22 should significantly facilitate the 
detection of aneuploidies.” 
 
Autosomal monosomies are not commonly detected 
in spontaneous pregnancy loss presumably due to 
high lethality. However trisomy for all chromosomes 
has been reported  with the most rarely seen trisomies 
reported for chromosomes 1 and 19 [37-41].  The most 
frequently identified trisomies are those involving 
chromosomes 15, 16, 21 and 22 which are the major 
cause of early pregnancy loss and the viable trisomies of 
chromosomes 13, 18, 21, X and Y which have a higher 
incidence in later gestation pregnancy loss [15, 41-43]. 

Fig. 3 QF PCR electropherogram showing mosaicism for trisomy 15. The presence of triallelic results for markers D15S643, D15S659, 
D15S657 indicates a meiotic non-disjunction event followed by a mitotic trisomy rescue event.

Fig.4 QF PCR electropherogram showing maternal cell contamination. Without analysing a maternal blood sample the fetal and 
maternal genotypes cannot be accurately assigned. All of the 8 triallelic markers show the classical A+B = C allele ratio pattern consist-
ent with maternal cell contamination.  

Fig. 2 QF PCR electropherogram showing trisomy 21. The presence of a triallelic result for marker D21S1435 indicates a meiot-
ic non-disjunction event. All other chromosome 21 markers show either a 2:1 (D21S11, D21S1411) or 1:2 (D21S1444, D21S1437, 
D21S1442) allele ratio consistent with three copies of chromosome 21.
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Therefore use of an expanded panel that includes 
STR-markers on chromosomes 15, 16 and 22 should 
significantly facilitate the detection of aneuploidies, 
particularly in first trimester pregnancy loss samples. 
To increase the number of abnormal samples detected 
using QF-PCR, Diego-Alverez et al. [33] used an 
expanded panel of STRs for chromosomes 2, 7, 13, 15, 
16, 18, 21, 22 and X. Using this approach a result was 
obtained for 94% of samples (where no karyotype result 
was available) and 36% of cases were shown to have a 
numerical chromosome abnormality. 
 
Up until March 2013 our laboratory routinely performed 
full karyotype analysis on all pregnancy loss samples. 
From April 2011 – April 2012 we received 416 samples 
and experienced a culture failure rate of 27% (n=112) 
and detected the abnormalities shown in table 1. 
 
From March 2013 an alternative diagnostic approach 
was taken and we currently perform QF-PCR for 
chromosomes 13, 15, 16, 18, 21, 22, X and Y combined 
with additional aCGH analysis as requested by the 
referring clinician. The QF-PCR also includes two X/
autosome paralogous markers which enable the 
number of X chromosomes to be calculated relative the 
number of autosome sequences amplified. This enables 
monosomy X to be more confidently diagnosed when 
all X chromosome markers are uninformative [44]. In 
the first 15 months we received 550 pregnancy loss 
samples with gestation ranging from 6 weeks to 42 
weeks. Types of samples analysed included chorionic 
villi, cord, skin, amnion and DNA from formalin fixed 
paraffin embedded (FFPE) biopsies. DNA was extracted 
from all tissue types using the DNA Mini Kit (QIAGEN). 
The failure rate dropped to 1.6% (n=9) with 5 samples 
not being reported due to MCC (4 chorionic villi 
samples and one severely macerated sample) and 
the remainder due to poor quality DNA (3 from FFPE 
material). All samples were analysed in accordance 
with Association for Clinical Cytogenetics and Clinical 
Molecular Genetics Society QF-PCR for the diagnosis 
of aneuploidy Best Practice Guidelines [45] and the 
frequency of abnormalities detected are shown in table 
2. Nineteen aCGH analyses were requested during this 
period and of these fifteen were normal, confirmation 

was provided for the mosaic 22 and monosomy 21 
results obtained by QF-PCR and two deletions were 
detected (del 17q12 de novo, del 16q24.3 mat).

Results Number of samples (n=416) %
Normal male 136 33

Normal female 119 29

Trisomy 4 2 (1 mosaic) 0,5

Trisomy 9 1 0,2

Trisomy 10 1 0,2

Trisomy 13 4 (1 mosaic) 1

Trisomy 14 1 0,2

Trisomy 16 1 0,2

Trisomy 18 4 1

Trisomy 21 11 2,6

Trisomy 22 3 0,7

Triploidy 5 1,2

Monosomy X 8 1,9

Other 46,XY,del(1)(q2?5)[2]/46,XY[28]

46,XX,t(7;21)(p22;q22),inv(12)

(q13;q23)/46,XX

45,XY,der(14;22)(q10;q10)

46,XX,t(1;17)(q42.1;p11)

46,Y,der(X)t(X:Y)(p22.3;q11.2)mat

46,XY,t(4;17)(q21;p13)

46,XY,t(2;10)(p22.2;q11.2)mat

45,XX,der(18)t(18;22)(p11.2;q11)dn

1,9

Culture Fails 112 27

Tab. 1 Abnormalities detected by karyotype analysis from April 
2011 – April 2012. The assay had an overall detection rate of 12% 
and a failure rate of 27%.

Tab. 2 Abnormalities detected by QF-PCR assay for chromsomes 
13, 15, 16, 18, 21, 22, X and Y from March 2013 – July 2014. The 
assay had an overall detection rate of 18% and a failure rate of 1.6%.

Results
Number of samples 
(n=550)

%
Gestational 
age range 
(weeks)

Normal male 233 42,4

Normal female 210 38,2

Trisomy 18 19 3,4 8-21

Monosomy X 15 2,7 8-14

Trisomy 21 14 2,5 7-35

Triploidy 14 2,5 7-20

Trisomy 16 12 2,2 6-12

Trisomy 13 10 1,8 11-21

Trisomy 22 7 (1 mosaic) 1,3 7-10

Trisomy 15 5 (1 mosaic) 0,9 8-12

XYY 1 0,2 16

Monosomy 21 1 0,2 13

Special considerations 
 
Sample types 
Samples received for analysis of pregnancy loss should 
ideally be received within 24 hours of biopsy. Samples 
are often received by laboratories as products of 
conception, whole fetuses or biopsy samples that can 
include skin, placenta and cord from fetuses with a wide 
gestational range. MCC can be a particular problem 
when biopsies are taken from placental tissue especially 
those taken from products of conception. A biopsy of 
amnion can be taken from the placental surface (near 
the cord origin) using forceps to lift the thin translucent 
amniotic membrane free from the chorion and placenta. 
A placental/chorionic villus biopsy can be taken as near 
to the umbilicus insertion as possible to maximise the 
chance of it being fetal in origin. An inverted dissecting 
microscope can be used to select and clean up the 
specimen to ensure that it fetal in origin. For skin 
biopsies it is recommended that they are examined 
using a dissecting microscope and that any fat is 
removed using a sterile disposable scalpel (24 weeks 
gestation and above). Products of conception can be 
examined with the aid of a dissecting microscope

and any fetal parts removed for analysis. Poor quality 
tissue is often obtained when the fetus is macerated or 
tissues have undergone severe autolysis and these may 
present a particular challenge for successful analysis. 
Occasionally FFPE biopsies (or DNA extracted from 
FFPE biopsies) are received. These can be analysed 
successfully but DNA extracted from these samples is 
often highly degraded and, for PCR based analysis, the 
higher molecular weight targets will often amplify less 
efficiently. This can be overcome by using STR designs 
that target shorter amplicons [46].
 
Maternal cell contamination (MCC) 
Detection of MCC is important to avoid the incorrect 
reporting of a normal female fetal sample resulting from 
the inadvertent analysis of maternal cells.  When fetal 
tissues are cultured maternal cell overgrowth can occur. 
In one study it was shown that as many as 40% of 46,XX 
fetal karyotypes reported were actually maternal in 
origin [8]. In uncultured samples MCC is most common 
in samples of placental origin, in particular chorionic 
villus. QF-PCR can be a particularly useful technique 
for detecting the presence of MCC as it gives a very 
characteristic pattern for markers on all chromosomes 
tested (figure 4) and can detect MCC at a level of 
approximately 10%. Additional reading about MCC is 
available in the Expert Review 02: Detecting mosaicism 
with QF-PCR, authored by Kathy Mann.
 
Mosaicism 
Mosaicism is defined as the presence of two or more 
cell populations that have a different genotype and is 
found in perinatal samples most often in the placenta. 
Mosaicism can result from a trisomy conception that 
has occurred following a meiotic non-disjunction 
event which then undergoes a mitotic rescue event to 
generate a normal cell line. Alternatively it may occur 
due to a mitotic non-disjunction event in a normal cell 
giving rise to a trisomy cell line. QF-PCR analysis will 
detect a mosaic cell line present at approximately 15%  
if a triallelic result is present or 20% if only biallelic 
results are obtained (figure 3 and ref 47). Additional 
reading about MCC is available in the Expert Review 02: 
Detecting mosaicism with QF-PCR, authored by Kathy 
Mann. 
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Summary 
 
A genetic diagnosis for pregnancy loss can provide 
important information for future reproductive advice 
and may also have emotional benefit to the couple 
concerned. Although karyotyping of miscarriage 
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approach is labour intensive, expensive, requires highly 
trained technical staff and is often unsuccessful due 
to the high tissue culture failure rate. Consequently 
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overcome the limits of cytogenetic analysis: these 
include aCGH, FISH, MLPA, BoBs and QF-PCR. 
These methodologies have distinct advantages and 
disadvantages and currently none of the techniques 
have been shown to be suitable to be used as a stand 
alone test. Many studies have shown that a combination 
of testing strategies can be used to obtain a successful 
diagnosis. Most focus on the use of QF-PCR (or FISH) 
as a first line test to detect samples with aneuploidy or 
triploidy (with or without mosaicism) and can be used 
to exclude the presence of MCC. The use of extended 
panels of STR markers to include chromosomes 15, 
16 and 22 will improve detection rates for earlier 
gestational age samples. Where no numerical 
abnormality is detected samples can then be reflex 
tested using additional techniques as required to detect 
other chromosome aneuploidies and unbalanced 
rearrangements. The type of combined strategy 
implemented by laboratories will differ depending 
on the referral categories for samples accepted, 
equipment and staffing structures available and local 
cost benefit analysis. These approaches are likely to 
replace conventional cytogenetic analysis and provide a 
successful, efficient and good quality diagnostic service 
for the genetic analysis of pregnancy loss samples. 

”A genetic diagnosis for pregnancy loss can 
provide important information for future 
reproductive advice and may also have  
emotional benefit to the couple concerned” 
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